Nilai lim_(x→0)⁡ (sin⁡ x + sin⁡ 5x)/6x=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 0} \ \frac{\sin x + \sin 5x}{6x} = \cdots \)

  1. 2
  2. 1
  3. 1/2
  4. 1/3
  5. -1

(UN SMA IPA 2010)

Pembahasan:

\begin{aligned} \lim_{x \to 0} \ \frac{\sin x + \sin 5x}{6x} &= \lim_{x \to 0} \ \frac{2 \sin \left( \frac{x+5x}{2} \right) \cos \left( \frac{x-5x}{2} \right)}{6x} \\[8pt] &= \lim_{x \to 0} \ \frac{2 \sin 3x \cos (-2x)}{6x} \\[8pt] &= 2 \cdot \lim_{x \to 0} \ \frac{\sin 3x}{6x} \cdot \lim_{x \to 0} \ \cos(-2x) \\[8pt] &= 2 \cdot \frac{3}{6} \cdot \cos(-2 \cdot 0) = \frac{6}{6} \cdot \cos 0 \\[8pt] &= 1 \cdot 1 = 1 \end{aligned}

Jawaban B.